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Fluctuations of the charge Q� inside a subdomain � embedded in an electrolyte contained in a finite cubical
box of dimensions L�L�L with periodic boundary conditions are investigated. When � is an L�L “slab” of
width W, asymptotically exact expressions for the mean-square fluctuation �Q�

2 � are obtained in terms of the
Lebowitz length �L�T ,�� and of the “true” or asymptotic screening/decay length �Z,��T ,�� together, when the
charge correlation decay is oscillatory, with the characteristic wavelength �Z�T ,��. In finite systems, the
normalized charge fluctuations exhibit threefold scaling behavior in the ratios �Z,� /W, W /�Z, and W /L. This
enables one to estimate all the correlation lengths away from criticality quite precisely from finite-size grand
canonical Monte Carlo simulations. The results for �Z,� , �Z, and �L are presented for the restricted primitive
model or hard-sphere 1:1 electrolyte for densities ��1.3�c and T�4Tc. The fitted values compare favorably
with the expectations of generalized Debye-Hückel theory �Lee and Fisher, Europhys. Lett. 39, 611 �1997��;
specifically, if �D	 �T /��1/2 is the Debye length, we find �Z,�
�D
�L, although, since ion-pairing is ne-
glected, the charge oscillations set in only for densities �1.9 times larger than predicted.
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I. INTRODUCTION

The behavior of charge fluctuations and correlations in an
electrolyte has been a challenging problem for decades �1�
and remains so both for theory and simulation. Here we fo-
cus on what may be learned from Monte Carlo simulations,
particularly for various correlation lengths, by the careful
study of finite-size effects. Specifically, a straightforward
method is presented which, outside the critical region, en-
ables charge-charge correlation lengths to be extracted pre-
cisely from finite-size Monte Carlo simulation data. Of
course, the charge-charge correlation function GZZ�r ;T ,��
for a classical fluid of overall ionic density � is well known
to decay exponentially on the scale of the “true” or
asymptotic screening length �Z,��T ,��, that is,

�GZZ�r;T,��� � e−�r�/�Z,� as �r� → � . �1�

According to simple Debye-Hückel �DH� theory �2�,
�Z,��T ,�� is identical to the Debye length �D�T ,��, which, for
ions carrying charges q�=z� q, is given by

1/�D
2 = D

2 = 4� z̄2
2q2�/DkBT , �2�

where z� is the valence of ions of species � while q is the
elementary charge and �=	� �� is the number density of
ions �where �� represents the number density for species ��;
further, z̄2

2=	� z�
2�� /� is the mean square valence and D is

the dielectric constant of the medium. However, DH theory
is exact only when � approaches zero or T becomes large �3�.
For finite ��0 and T
�, the decay length �Z,��T ,�� devi-
ates from �D�T ,��. But how large are these deviations for
densities and temperatures on the scale of the critical values
�c and Tc? Furthermore, at higher densities the charge-charge

correlation functions decay in oscillatory fashion with a char-
acteristic wavelength, say �Z�T ,�� �4–7�, which DH theory
fails entirely to predict.

To understand better the various correlation lengths for
ionic fluids, Lee and Fisher extended the original DH theory
to nonuniform systems �6,7�. The resulting generalized
Debye-Hückel �GDH� theory is the simplest theory among
many others such as, e.g., those described in Refs. �8–13�. It
actually provides a simple explicit expression for �Z,��T ,��
in the case of the restricted primitive model �RPM�—the
basic two-component, z�= �1, fluid of equisized hard
spheres of diameter a, on which we will focus here. It tran-
spires, furthermore, that the formula for �Z,� exhibits a bifur-
cation at Da
1.178 beyond which, as originally suggested
by Kirkwood �4�, charge-charge oscillations with a wave-
length �Z�T ,�� are predicted. When D	 �� /T�1/2 increases,
�Z,��T ,�� decreases and is predicted to remain always
smaller than �D�T ,�� up to the onset of the charge oscilla-
tions. In the oscillatory region the charge correlation length
�Z,� increases and, according to GDH theory, diverges to
infinity at a “point of crystallization.” Since GDH theory is
of mean-field character one would expect it to describe the
behavior of charge �and density� correlations at least semi-
quantitatively at low densities and high temperatures. On ap-
proaching the vapor-liquid critical point, where density fluc-
tuations dominate, GDH theory predicts, for charge-
symmetric systems like the RPM, that �Z,��T ,�� remains
finite at criticality �while the density correlation length
�N,��T ,�� diverges�. This feature matches the exact solution
of the �d�2�-dimensional ionic spherical models �14�. How-
ever, the validity of the finiteness prediction for the RPM and
more realistic models remains to be verified; and a recent
study suggests that it may actually fail �15�. But in the
present work we consider only regions away from criticality.

The exact low-density expansions �3� show that �Z,��T ,��
deviates from �D�T ,�� via a leading correction term varying
as � ln � �which cannot be generated by GDH theory�. How-
ever, recent simulations �16� for the RPM evaluated the
Lebowitz length �L�T ,��—see below—and found that these
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low-density expansions suffer from remarkably slow conver-
gence. Indeed, even for densities �*=�a3�0.01 and T

10Tc the low-density expansion truncated after the leading
correction term deviates significantly from the simulation es-
timates. Note, however, that this previous study �16� did not
at all address the charge screening length �Z,�. Initially, in
fact, �Z,� seemed beyond computational reach; but our aim
here is to extend the previous study and to demonstrate that,
indeed, �Z,��T ,�� can be reliably estimated via simulation.

Following the definition �1� a “traditional” approach to
calculating �Z,��T ,�� has been to use direct simulations of
GZZ�r ;T ,�� by fitting the long-distance behavior to a simple
exponential. Simulating GZZ�r ;T ,��, however, is computa-
tionally expensive and also lacks precision, since one needs
the distribution at many distances. And, most significantly,
finite-size effects on GZZ�r ;T ,�� must be understood well
before attempting to extract �Z,� with any reliability from the
necessarily truncated data.

In this paper we present a straightforward method for ex-
tracting �Z,��T ,�� and other correlation lengths precisely
from finite-size simulation data away from the critical point.
When criticality is approached, however, the diverging den-
sity correlation length and large fluctuations inevitably ham-
per the reliable extraction of �Z,��T ,�� from simulations.

To compute �Z,��T ,�� we turn to an interesting aspect of
the screening of the long-range Coulomb interactions,
namely, the so-called “area law” of charge fluctuations. To be
specific, consider a regular subdomain � with surface area
A� and volume ���, embedded in a larger domain. If Q� is
the total fluctuating charge inside �, electroneutrality implies
a vanishing mean value, �Q��=0. The mean square fluctua-
tion �Q�

2 �, however, does not vanish but, rather, grows when
��� increases. In the absence of screening, one expects
�Q�

2 �����; however, in a fully screened, bulk conducting
fluid it transpires that �Q�

2 � increases asymptotically only as
the surface area A�. This was first observed by van Beijeren
and Felderhof �17� and later proven rigorously by Martin and
Yalcin �18�. Following the interpretation of Lebowitz �19�
one may then define a screening distance, �L�T ,��, via

�Q�
2 �/A� � cd�z̄2

2q2�L�T,�� as ��� → � . �3�

This measure has been called the Lebowitz length �3�a�,6�;
by selecting the numerical constant cd one can normalize �L

to �D when �→0: this yields c3= 1
2 . �Note that for the RPM

one has z̄2
2=1.� As mentioned, the Lebowitz length has been

studied via Monte Carlo simulations �16,20� in which it was
extracted directly from observations of �Q�

2 � for various sub-
domains �. Comparison with GDH theory and the low-
density expansions �3� showed that the simulation estimates
were consistent with the exact expansions for very low den-
sities only up to �a3�0.005 even at T�10Tc, while at den-
sities up to �a3
0.1 they followed GDH theory semiquan-
titatively. But we will now demonstrate that the other
correlation lengths, �Z,��T ,�� and �Z�T ,��, can also be ex-
tracted from essentially the same simulation data for �Q�

2 � by
paying closer attention to the effects of the finite dimensions
of both the simulation boxes and the subdomains sampled.

To see this briefly, note that �Q�
2 � can be obtained by

integrating the charge-charge correlation function
GZZ�r ;T ,�� over the subdomain � of interest. Since GZZ�r�
at long distances �but much less than the box size� is de-
scribed by an exponential decay controlled by the screening
length �Z,��T ,��, it is understandable that �Q�

2 � might be di-
rectly sensitive to �Z,�; see Sec. II. Thus if one knows ex-
plicitly the relationship between �Q�

2 � and �Z,� for a subdo-
main �, one can, at least in principle, extract �Z,� from a set
of simulation data for �Q�

2 � that, for each value of �T ,��,
encompasses a sufficiently broad range of domain sizes and
box dimensions. Note that the same principle applies to es-
timating the wavelength �Z�T ,��.

The paper is organized as follows. A brief theoretical
background regarding charge fluctuations in finite systems is
presented in Sec. II. The fluctuations for spheres in a bulk
system and slabs embedded in finite cubes with periodic
boundary conditions are derived analytically. The asymptoti-
cally exact, analytical results are verified by simulations in
Sec. III; the correlation lengths �Z,�, �Z, and �L are estimated
from the simulation data and presented in Figs. 2–5. Section
IV summarizes the conclusions.

II. THEORETICAL BACKGROUND

In this section we derive a formula for �Q�
2 � for a slab in

a three-dimensional L�L�L simulation box with periodic
boundary conditions. To that end, we first provide a brief
analysis of the charge fluctuations in subdomains embedded
in bulk systems �L→ � � as developed by van Beijeren and
Felderhof �17�. For simplicity, however, we present the
theory only in a weak-coupling �T→ � � or Debye-Hückel
�DH� limit where the charge correlation function decays as
GZZ�r��exp�−Dr� /r. We then argue that the results can be
applied to situations beyond the DH limit by replacing the
inverse Debye screening length D by the exact asymptotic
screening length =1 /�Z,�.

A. Charge fluctuations in finite subdomains

The charge fluctuation �Q�
2 � is related to the charge-

charge correlation function GZZ�r ;T ,�� via

�Q�
2 � = �

�
�

�

drdr�GZZ�r − r�� , �4�

where the integrations are performed over the subdomain �.
We note that the Lebowitz length �L�T ,�� in Eq. �3� is de-
fined asymptotically for �� � →�; but one may define a
finite-size Lebowitz length ���T ,�� for any finite �, via

���T,��  �Q�
2 �/cd�z̄2

2q2A�. �5�

This approaches the bulk Lebowitz length �L�T ,�� when the
subdomain � grows indefinitely in an infinite domain. If one
assumes that GZZ�r� then varies as exp�−r /�Z,��, with r= �r�,
which is true for r�a, it is reasonable for � much larger
than the ionic size to assert that
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���T,�� � �L�T,��F���Z,�/L�� when L� → � , �6�

where L� is a characteristic linear dimension of � �e.g., L�

= ���1/d�, while F��x� is a scaling function which depends on
the specific geometrical shape of �.

The behavior of F��x� for large and small x=�Z,� /L� is
easily determined: when L�→� at fixed �T ,�� one has
���T ,��→�L�T ,��. On the other hand, if �Z,��L� the
screening effects on �Q�

2 � will be truncated so that �Q�
2 � will

grow like the volume of �. Thus we conclude

F��0� = 1 and F��x� � 1/x as x → � . �7�

When GZZ�r ;T ,�� exhibits oscillatory behavior an addi-
tional multiplicative factor, cos�2�r /�Z+��, enters the
asymptotic behavior: then it is natural to extend Eq. �6� to
assert

���T,�� � �L�T,��F̃���Z,�/L�,L�/�Z� . �8�

Clearly one must have F̃��x ,0�=F��x� to describe the ab-
sence of charge oscillations in the limit �Z→�.

Now one must recall that computer simulations are inevi-
tably performed in a finite domain; specifically, we will ad-
dress only periodic cubical boxes of side L. It is imperative
that the resulting further finite-size effects on �Q�

2 � be con-
sidered; but to accommodate the additional length scale L, it
is natural to advance the threefold scaling ansatz

���L;T,�� � �L�T,��G��L�

L
;
�Z,�

L�

,
L�

�Z
� . �9�

To describe the threefold limits L→�, L�→�, �Z→�, one
needs G��0;0 ,0�=1; but when L→� with L�
�, the pre-
vious bulk results are recovered provided G��0;x ,y�
= F̃��x ,y�. In the following subsections we compute these
scaling functions explicitly in the DH limit for various spe-
cial geometries and, in so doing, will verify the scaling ex-
pectations.

It is natural to inquire as to the domain of validity of the
asymptotic scaling ansatz �9�. Implicit is the assumption of a
large subdomain � so that L� /a�1. From this �necessarily
since L��L� a large simulation box is imperative, i.e., L /a
�1 is needed. The dependence on �Z,� /L�, which we may
suppose is of the same order as �Z,� /L, is more subtle. In the
general case of finite-size scaling this ratio may be large or
small since, indeed, one expects finite-size scaling to be valid
for L /a�1 right up to and including criticality. �See, e.g.,
�16�.� However, as mentioned, we will calculate the scaling
function in Eq. �9� for the more limited regime in which
exponential charge screening is valid. Then the character of
the decay of the envelope of GZZ�r� plays a more crucial role
and one must anticipate that in the critical region, where the
density correlation length �N,� diverges, the calculated form
for G��x ;y ,z� will no longer be adequate.

Apart from this situation, further special considerations
apply when the onset of charge oscillations is approached. As
discussed further below, a second, albeit subdominant expo-
nential decay length then appears. The associated correction
terms affect the accuracy of the dominant scaling expression.

B. Debye-Hückel limit

The charge-charge correlation function can be written
generally as

GZZ�r,r�� = 	
�

q�
2����r − r�� − 	

�
	
�

q�
2��q�

2��g�r,r�� ,

�10�

where, in the DH regime with vanishing ionic size �a→0�,
g�r ,r�� satisfies the Debye-Hückel partial differential equa-
tion �2,6�

�2g − 2g = − �4�/DkBT���r − r�� , �11�

in which  is the inverse screening length. In the full DH
limit, one has =D=1 /�D but the validity of Eq. �11� will
extend to regimes in which one leading exponential decay, as
in Eq. �1�, dominates.

On using Eq. �10�, the charge fluctuations in a subdomain
� can be expressed as

�Q�
2 � = �

�

dr�
�

dr�GZZ�r,r��

= 	
�

q�
2������1 − 	

�

q�
2���

�

dr��r�� , �12�

where the �-averaged correlation function is

��r� 
1

�����

g�r,r��dr�. �13�

It follows from Eq. �11� that ��r� satisfies

�2� − 2� = − �4�/DkBT�������r� , �14�

where the characteristic function ���r�=1 if r lies inside �
but vanishes otherwise. Furthermore, ��r� and its derivatives
must be continuous everywhere including the boundary of �.
By solving Eq. �14� with appropriate boundary conditions
�including decay to zero as �r � →�� and integrating the so-
lution over �, one can obtain the charge fluctuations via Eq.
�12�.

As the simplest example consider a sphere of radius R
embedded in a bulk system. This case was originally studied
by van Beijeren and Felderhof �17� and has been revisited
more recently by Jancovici �21�. For a spherical geometry
the solution of Eq. �14� for r
R is

��r� =
3

DkBT2R3�1 − �1 + R�exp�− R�
sinh r

r
� .

�15�

Integrating over the sphere and using Eq. �12� yields

�Q�
2 � = DkBT�1 + R�

e−R


�R cosh R − sinh R� . �16�

The normalized finite-size Lebowitz length is then given by
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���R;T,�� =
2

3R2 �1 + R�e−R�R cosh R − sinh R� ,

�17�

from which one finds �L�T ,��=1 /=�D in the DH limit as
expected. Evidently scaling is obeyed with a scaling func-
tion, taking x�Z,� /R, given explicitly by

F��x� = 2�1 + x�e−1/x�cosh�1/x� − x sinh�1/x�� . �18�

One readily checks that F��0�=1, while F��x��2 /3x when
x→� so confirming Eq. �7�.

Beyond the DH limit, the charge-charge correlation func-
tion decays exponentially with the asymptotic correlation
length �Z,� rather than �D. Furthermore, for a finite ionic
diameter, a�0, the charge-charge correlation function devi-
ates strongly from a simple exponential function near r=a.
One may thus ask: “Can the expression �18� be applied to
such cases specifically, for example, to the RPM?” In re-
sponse, notice that when R�a, the integrations in Eqs. �12�
and �13� are dominated by r near the surface �r � =R. Further-
more, the nonexponential variation arising from the region
near �r � =a should contribute mainly to the nonuniversal
scaling amplitude �L�T ,�� in Eq. �6�. Hence in leading order
one should expect the same universal scaling function F��x�
for spherical domains but with a correction factor differing
from unity by terms varying as �a /R�� with ��1.

When charge oscillations arise, GDH theory indicates
that at long distances GZZ�r ;T ,�� behaves as
r−1 exp�−r /�Z,��cos�2�r /�Z+���Re�e−�r+ii�r+i�� with r
=1 /�Z,� and i=2� /�Z, where � is a phase shift and Re�·�
denotes the real part. Hence by replacing  in Eqs. �14�–�17�
simply by a complex parameter =r+ ii, and taking the
real part, one can obtain the full scaling function

F̃���Z,� /R ,R /�Z� for a spherical subdomain in a bulk sys-
tem. �Note that the phase shift � plays no role in this step.�

For applications to simulations, however, one now needs
to calculate �Q�

2 � for a sphere that is embedded in a finite
cubical box with periodic boundary conditions. The task of
solving the differential equation �14� for such a geometry is
nontrivial, making spherical subdomains unattractive for
simulations. Accordingly, we turn to a subdomain with a
simpler geometry, namely, a “periodic slab” of width �or
thickness� W
L.

C. Charge fluctuations in slabs

Figure 1�a� presents the geometry of a periodic slab of
dimension L�L�W embedded in a periodic cubical box of
side L �as considered in our simulations�. Owing to the pe-
riodic boundary conditions, the two coordinates parallel to
the surface planes of the slab become irrelevant, and one can
map the slab, of relative width w=W /L, onto a one-
dimensional periodic interval of period L as shown in Fig.
1�b�. The partial differential equation �14� then reduces to an
ordinary differential equation, namely,

d2��z�
dz2 − 2��z� = −

4�

DkBTWL2�W�z� , �19�

where �W�z�=1 for z� �nL ,nL+W�, with n
=0, �1, �2, . . ., but �W=0 otherwise. With the boundary
conditions that ��z� and �d� /dz� are continuous at z=nL and
nL+W �n=0, �1, . . . � it is straightforward to obtain the so-
lution for 0�z�W, namely,

��z� =
4�

DkBT2WL2�1 +
�eL − eW�e−z

2�1 − eL�

+
�e−L − e−W�ez

2�1 − e−L� � . �20�

Integration then yields the scaling behavior

���L�/�L � F̃�w;x� =
1 − e−1/x + e−1/wx − e−�1−w�/wx

1 − e−1/wx , �21�

with x�Z,� /W and w=W /L. In the thermodynamic limit
�w=0�, one obtains F��x�=1−e−1/x with F��0�=1 and
F��x��1 /x when x→� in accord with the general expecta-
tions.

Finally, in the presence of asymptotic charge oscillations
when �Z
�, the full scaling function, G�, appearing in Eq.
�9� can be obtained, as explained, by replacing  in Eq. �20�
by r+ ii and taking the real part. After some algebra, one
then finds, with, we recall, w=W /L, x=�Z,� /L and, now, y
2�W /�Z,

G��w;x,y� = H�w;x,y�/K�w;x,y� , �22�

where the numerator and denominator are

H�w;x,y� = 1 − e−2/wx − �e−1/x − e−�2−w�/wx�cos y

+ �e−�1+w�/wx − e−�1−w�/wx�cos��1 − w�y/w� ,

�23�

K�w;x,y� = 1 + e−2/wx − 2e−1/wx cos�y/w� . �24�

This verifies the full scaling ansatz �9� and we may note that
when y=0 �i.e., �Z=��, one recovers Eq. �21�.

III. CORRELATION LENGTHS OF THE RPM

We have performed grand canonical Monte Carlo simula-
tions for the RPM at T*=kBTa /q2=0.2
4T

c
* and T*=0.5 for

(a) (b)

L

L

L

W

W

z

0 W L L+W

z

FIG. 1. �a� Schematic diagram of a “periodic slab” of width W
inside a periodic cubical simulation box of side L and �b� corre-
sponding one-dimensional projection onto the z axis.

YOUNG C. KIM AND MICHAEL E. FISHER PHYSICAL REVIEW E 77, 051502 �2008�

051502-4



0.001��*�0.1 employing box sizes L*=L /a varying from
10 to as large as 24 at low densities, �*�0.01. In order to
accelerate the computations, a finely discretized lattice ver-
sion of the RPM has been adopted �22� using a �a /a0=5
level �where a0 is the lattice spacing�. Note, however, that it
is well established that for ��3 the fine-lattice discretization
has no qualitative effect on the thermodynamic or finite-size
properties �23�. For the �=5 model one has T

c
*
0.05069 and

�
c
*
0.079 �24,25�.

At each state point �T* ,�*�, histograms of fluctuating
charges Q� for slabs with w=W /L=0.2,0.3,0.4,0.5 were
collected; see Fig. 1. To enhance the information extracted
from these data, a multihistogram reweighting technique was
adopted �26�: the ensemble average of the charge fluctuations
�Q�

2 � may then be computed for any desired T* and �* in the
range encompassed by the state points simulated. The finite-
box finite-size Lebowitz length ���L ;T ,�� is calculated via
Eq. �5� setting A�=2L2 for all slabs. Finally, to estimate
�Z,��T ,��, �Z�T ,��, and �L�T ,��, least-square fits of the
simulation data for ���L ;T ,�� to the general threefold scal-
ing ansatz �9� were performed by using the theoretical ex-
pressions �22�–�24� with the three fitting parameters, x, y,
and �L.

At low densities ��*�0.03�, the fits to Eqs. �22�–�24�
yield y close to zero or �Z�T ,��=�, so that, as anticipated,
the charge-charge correlation function appears to decay ex-
ponentially without oscillations. On the other hand, when
�*�0.03, better fits are obtained with y�0 thereby indicat-
ing the presence of charge oscillations. However, one may
still ask for explicit evidence of the validity of the scaling
behavior �9� with Eqs. �22�–�24� for the charge fluctuations
under the conditions in which our simulations were per-
formed.

To address this issue, we present in Fig. 2 plots of the
finite-size ratio ���L� /�L vs �Z,� /W �=x /w� at T*=0.5 and
�*=0.0025 �corresponding to XDa
0.25� using the fit-
ted �L and �Z,� values. The various dotted curves represent
the analytical expression �21� for wW /L
=0.2,0.3,0.4,0.5 while the solid curve is the analytical re-
sult for w=0 �i.e., L=��. The excellent collapse of the simu-
lation data for system sizes L*, ranging from 10 to 24 onto
the theoretical plots parametrized by w, demonstrate that the
scaling description of ���L� remains valid even for L* as low
as 10 and confirms the validity of the fitting procedure. It is
notable that the fitted value of �L�T ,�� exceeds the largest
simulated value ���L ;T ,�� by 10%.

To confirm the scaling behavior of ���L� also at higher
densities, Fig. 3 presents simulation data at T*=0.5 and also
T*=0.2 for various densities below �*=0.03 �with X=Da
ranging between 0.25 and 0.66� where no charge oscillations
are indicated. Evidently the scaling behavior is remarkably
well verified.

At higher densities, �*�0.03, we found that optimal fit-
ting of the simulation data to Eqs. �22�–�24� was obtained
with y�0 or �Z
�. The scaling function for ���L� then
contains the extra variable, y=2�W /�Z�T ,��. Figure 4 illus-
trates the quality of fitting for w=0.2. Note that when �Z
=� �so that y=0�, the plot �on the front face� matches that in
Fig. 3. It was observed that the simulation data are well
described by the scaling functions �22�–�24� for X=Da
�2.0.

The resulting correlation lengths, �Z,�, �Z, and �L, ob-
tained from the fitting for T*=0.2
4T

c
* are plotted in Fig. 5

vs X=a /�D, which increases as ��. Also included, as solid
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FIG. 2. The finite-size Lebowitz ratio ���L ;T ,�� /�L�T ,�� fitted
as a function of �Z,��T ,�� /W for, from the left, reduced slab widths
w=W /L=0.5, 0.4 ,0.3, and 0.2. The symbols on each dotted curve
represent simulation data for the RPM at T*=0.5 and �*=0.0025
with, successively from the lowest values of �� /�L, box sizes L*

=L /a=10,12, . . . ,24, while the various dotted curves are the fitted
analytical expression �21� for the fixed values of w; the solid curve
is the corresponding result for L→�, i.e., w→0.
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FIG. 3. Scaling plots for fixed relative slab widths w as in Fig. 2,
showing the finite-size Lebowitz ratios ���L� /�L as a function of
�Z,� /W �with w=W /L=0.2, 0.4, and 0.5� where, now, the different
symbols represent data for densities from �*=0.001 up to 0.01 for
the previous range of box sizes and for T*=0.2 and 0.5. As previ-
ously, the dotted curves depict the corresponding fitted expressions,
while the limit w→0 �L→ � � is shown solid. The framed region
for �� /�L�0.9 is enlarged in the inset.
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curves, are the predictions of GDH theory. Overall, the simu-
lation results reflect rather well the trends exhibited by GDH
theory. Several points are worthy of mention. First, the
Lebowitz length obtained here—see the pluses in Fig. 5—is
consistent with the previous results for T*=0.5 �16�; specifi-
cally, �L�T ,�� rises above the Debye length �D�T ,�� by
10–30 % at higher densities while GDH theory overesti-
mates �L�T ,�� by only 5% or so above Da
1.

Second, our simulations suggest the onset of oscillatory
charge correlation decay at X=Da�1.4 while GDH theory
predicts a charge oscillation threshold at Da
1.178
�5,3�a��. At this value, sometimes labeled XK in honor of
Kirkwood �4�, the GDH asymptotic correlation length exhib-
its a bifurcation point. Near XK the correlation length falls

rapidly in square-root fashion, namely, as

�Z,��T,�� − �Z,��T,�K� � b−�XK − X�1/2, �25�

for X�XK, i.e., when �→�K�T� from below; above the Kirk-
wood threshold, however, it increases linearly as

�Z,��T,�� − �Z,��T,�K� � b+�X − XK� , �26�

where both amplitudes b− and b+ are positive. At the same
time, the oscillatory wave number kZ�T ,��2� /�Z�T ,�� in-
creases sharply �above XK� according to a square root law.
This behavior is evident from the solid curves in Fig. 5 and is
seen explicitly in the theoretical plots displayed in Fig. 1 of
�both� Refs. �3�a�� and �6�.

On the other hand our extrapolations of the simulation
data for �Z,�—see the open circles in Fig. 5—exhibit a cor-
responding asymmetric maximum vs X around X=1.7; but it
is very smoothly rounded. The reduced wave number kZa
=2�a /�Z —see the open triangles in Fig. 5— does show a
sharp onset; but the behavior above the threshold could well
be interpreted as a linear rise with X rather than a square-root
dependence. These differences, we believe, represent short-
comings of the present numerical analysis resulting primarily
from the necessarily restricted box sizes that were computa-
tionally accessible.

Indeed, it seems most probable that the RPM �and other
comparable models� will exhibit bifurcations obeying Eqs.
�25� and �26� �and, similarly, for kZ�T ,���. In that case, when
�→�K�T� from below, a second but shorter charge correla-
tion length, say �Z,�

− =1 /− appears, as again seen in Fig. 1 of
Refs. �6,3�a��. This derives from the subleading pole of the

Fourier transform ĜZZ�k� which approaches the leading pole
so that �= �−−� decreases and vanishes when �=�K. The
main consequence is that for � close to �K the charge-charge
correlation function gains a relatively large correction, vary-
ing like e−�r, which is not accounted for by Eq. �11� or �19�.
Such an exponentially decaying correction to the scaling
function �22� should become negligible for large enough box
sizes L; but for restricted sizes the accuracy of fits near the
Kirkwood point will be markedly reduced.

To make allowance for the expected behavior in Eqs. �25�
and �26� and for the associated lower accuracy, we have
indicated by the dotted-dashed curves in Fig. 5 what we feel
is a more reasonable, albeit approximate, rendition of the
variation of �Z,��T ,�� and �Z�T ,�� for the RPM in the range
X=Da=1.3–2.2. The Kirkwood threshold, as drawn in, is
close to XK=1.63; that corresponds to a density �1.9 times
larger than the GDH prediction. It must be emphasized, how-
ever, that this is no more than a rough guess: the “observed”
threshold at XK
1.45 would suggest a density factor of only
�1.5. Other approximate treatments, such as the generalized
mean spherical model �10� which yields XK
1.228, also
seem to fall short by factors of 1.25–1.40 or greater.

To improve on our estimates for XK, data for significantly
larger system sizes would be needed. Such simulations
would, we believe, reveal increasingly sharper maxima in the
fits for �Z,��T ,�� better approximating Eqs. �25� and �26�.
Correspondingly, a steeper vanishing of the wave number
kZ�T ,�� should appear. It may also be, however, that more
precise simulation data for a larger range of slab widths
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could be of assistance in sharpening the fitted bifurcation.
It should be remarked, however, that the relatively larger

value of the Kirkwood threshold, especially at low tempera-
tures, is to be expected in light of the known importance of
Bjerrum ion pairing which, in essence, serves to reduce the
density of free ions and, hence, leads to a renormalization of
the GDH values �6,7,27,28�. The same will apply to other
approximations �e.g., �10�� that neglect pairing.

Finally, although the expected singular variation of
�Z,��T ,�� cannot be fully captured, we believe that outside
the rounding region �say, X=1.75�0.25� the values obtained
for �Z,��T ,�� and �Z�T ,�� are reliable and reasonably accu-
rate. At the same time it is worth commenting that the esti-
mates for the Lebowitz length �L�T ,�� are remarkably insen-
sitive to the bifurcation and appearance of oscillatory decay.

IV. CONCLUSIONS

In summary, we have presented a surprisingly straightfor-
ward and simple method for estimating the asymptotic
charge screening length �Z,��T ,��, the oscillation wavelength

�Z�T ,��, and the Lebowitz length �L�T ,�� of an electrolyte
from simulations of the charge fluctuations inside slabs of a
range of widths W. An asymptotically exact formula for the
mean-square charge fluctuation �Q�

2 � has been derived for
slabs contained in a periodic cubical box of side L. The nor-
malized finite-size charge fluctuations then exhibit threefold
scaling behavior in terms of the variables W /L, �Z,� /W, and
W /�Z. By fitting simulation data to the exact scaling form we
were able to extract all the correlation lengths precisely. The
results are in good semiquantitative agreement with the pre-
dictions of GDH theory. Furthermore, the fits reveal the on-
set of oscillatory charge decay at higher densities; however,
the expected singular variation of �Z,� and �Z is not revealed
in the numerics. Nevertheless, the threshold density for os-
cillations is clearly higher than predicted by the GDH and
other approximate theories. Finally, although the area law
underlying the definition of �L is not available for uncharged
fluid systems, the investigation of density and composition
fluctuations within suitable subdomains may still prove use-
ful in studying the decay of correlations in neutral fluids via
simulations.
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